solar power systems

Solar Power Plant A Dream Come True

They say, Where there is a will, there is a way. How true this saying is! Since the last two or three decades, people have realized that the natural resources our planet has are going to end if we (humans) use it as indiscriminately as we have in the past. People realized the price we would have to pay for careless use of nature’s bounty extinction. This is not a threat or a panic button, but plain truth regarding our (human race) future.

Can The Establishment Of Solar Power Plants Provide The Answer To This Predicament?

May be it can. Technology today has brought out many excellent models of solar power systems, which are cost effective to install, need no maintenance whatsoever and have a longer life than ours. If such solar power system could be used to make adequate solar power plants, then we can solve our electricity shortage problems and side-by-side get rid of many other related complications.

Acting on this premise, in Portugal, a solar power plant has been constructed on a pilot project basis. The power of some 52,000 voltaic cells would be harnessed to produce around 11 megawatts of solar energy for some 10,000 houses. If this project turns out to be a success, then be sure you will experience duplication of it all over the world. As in this case, solar power plants can provide a feasible alternative to the areas where power is scarce or difficult to install.

All round the globe, people are seeking viable alternatives to petrol and electricity. There are innumerable experts who are researching the conversion of vegetable oil into fuel oil with highly encouraging results. Castor oil, coconut oil and even sunflower oil has been tried and tested for feasibility as a bio-diesel. While the results are encouraging, the actual right ingredient’ has not been yet found.

On the other hand, manufacturers have brought out electric cars, which will need to be charged just as you charge your mobile phone. This is good news for the shortage of petrol, but adds one more item on the list of electricity consumers. This is a fact that brings us back to the use and feasibility of a solar power plant.

Solar power is free of cost and inexhaustible. We can have as much as we want, and that may be (with the threat of global warming and green house effect) more than what we want. Hence, it is a good idea to tap into this extraordinary source of energy for future self-sufficiency. Maybe this could be the way to save our Planet from further exploitation.

Residential Solar Power Systems: Make Electricity Bills A Thing Of The Past

When it comes to residential energy, spending is at an all time high. It costs so much to run the air conditioner, the television, the computer and whatever else people use to keep themselves occupied in their homes that they often have to reduce spending in other areas just to keep the lights on. The costs of energy have caused many people to consider some kind of residential solar power system.

Free Energy

A residential solar power system doesn’t need to use electricity from the local power plant. Instead, it uses an energy source that’s readily available and that’s, best of all, free. Residential solar power systems use the sunlight to power their household items. This can drastically reduce the amount on the electricity bill or it can even get rid of the electricity bill altogether.

A residential solar power system involves installing solar cells on the roof, or in other strategic places, in order to catch the rays of the sun. Technology has come a long way and this technology is going to save a lot of residents a lot of money.

Harness The Sun

Save your money and research what it would take to install a residential solar power system on your house. There’s no reason why you should spend a load of money to keep your lights on. If the energy is right there, waiting to be harnessed, as is the sun, you might as well take advantage of it.

It might cost you a substantial amount to have a residential solar power system installed on your home but the savings will be phenomenal. Leaving your lights on does not have to drain your pocketbook. You can leave your lights on and can spend your hard earned money on other things. Use the sun as your main energy source and stop relying on expensive power plants to fuel your home.

Residential solar power systems are the way of the future. With so much attention paid to lowering energy usage and keeping our environment clean, it just makes sense that we should use some kind of residential solar power system to fuel our homes. It will save us a lot of money in the long run and it uses an energy source that is available and it has absolutely zero ill effects on our precious atmosphere.

Finding A Solar Power Electric System Company

A solar electrical system is one which generates electricity when exposed to the sunlight, and works through silicon layers which are laminated under non-reflective glass in solar panels, which then collect photons from the sun and turn this energy into electrical power. Then, this power is flowed into an inverter, which converts and transforms it into usable voltage and AC electrical power.

If you are looking for a solar power electric system company, there are many reputable and decent ones out there. Solar Power Electric System is one of these solar power electric systems, and is a company which has been around long enough to gain an incredibly positive and respected reputation. Solar Power Electric System is the California solar power energy industry leader.

What Is Solar Power Electric System?

Solar Power Electric System uses a wide array of innovative and economical residential solar power systems, as well as that of business-savvy commercial power solar systems in their business. They have an incredibly extensive line of solar solutions which allow you to have the power to turn your electrical meter backwards so to speak, and even to sell back excess energy to your local power company.

This company has been in business for over 26 years, and they proudly stand behind their experienced team of solar experts, and offer many ways to customize an excellent solar power solution for your home or business area. In fact, Solar Power Electric System has been designing and installing solar systems for California and area customers since 1978. As well, they were rated as the best photovoltaic installer and the highest percentage performance of installed systems in Southern California.

They offer a number of quality references to the table as a company they have over 25 years of experience, five times more competitors than any other company in their industry, and as well are the world’s oldest licensed, full service photovoltaic contractors with over 500 residential solar power systems and 100 commercial photovoltaic solar power system installations in and around California.

Typically photovoltaic systems have a warranty for twenty to thirty years on average, and these systems require little to no maintenance, as because of the fact that there are no moving parts on a solar power system, thus there is basically nothing that can go wrong or stop working. This can save you much time and money, especially when compared to that of regular electrical systems.

Your Questions About Solar Energy Generator Price

Lizzie asks…

Is it better to store a solar battery in the sun or in a drawer?

I have a 4000 mah, portable solar battery. I got it to charge my e cigs and cell phone, while I’m partying I’m the woods next summer. Would it be better to keep it in my window where it gets charged every day or should I put it in a drawer or somewhere out of the light, until I need to use it.

admin answers:

Without batteries to store energy you would only have power when the sun was shining or the generator was running. This tutorial describes the 4 basic types of batteries & provides some good tips on the care & feeding of your batteries to maximize their performance and life.

1) RV / Marine / Golf Cart : RV or Marine type deep cycle batteries are basically for boats & campers and are suitable for only very small systems. They can be used but do not really have the capacity for continous service with many charge/discharge cycles for many years. Regular or Car type batteries should not be used at all because they cannot be discharged very much without internal damage. A very popular battery for small systems is the Golf Cart battery. They are somewhat more expensive than deep cycle recreational batteries but are probably the least expensive choice for a small system on a budget.

Industrial strength : Flooded, Gel, and AGM sealed batteries
The next 3 types are the heavier industrial type batteries. They are all also considered Deep Cycle and are usually Lead Acid types with much thicker internal plates that can withstand many deep discharge cycles. These next 3 are all designed for alternative energy systems.

2) Flooded types : These are Lead acid batteries that have caps to add water. Many manufacturers make these types for Solar Energy use. Trojan, Surrette, and Deka are probably the most well known. They are reasonably priced and work well for many years. All flooded batteries release gas when charged and should not be used indoors. If installed in an enclosure, a venting system should be used to vent out the gases which can be explosive.

3) Gel : Not to be confused with maintenance free batteries, sealed gel batteries have no vents and will not release gas during the charging process like flooded batteries do. Venting is therefore not required and they can be used indoors. This is a big advantage because it allows the batteries to maintain a more constant temperature and perform better.

4) AGM : Absorbed Glass Mat batteries are in my opinion the best available for Solar Power use. A woven glass mat is used between the plates to hold the electrolyte. They are leak/spill proof, do not out gas when charging, and have superior performance. They have all the advantages of the sealed gel types and are higher quality, maintain voltage better, self discharge slower, and last longer. The Sun Xtender series by Concorde Battery is an excellent example of AGM batteries. They are more expensive, but you usually get what you pay for. You will find this type of battery used in airplanes, hospitals, and remote telephone/cell tower installations.

Sandra asks…

What is the best type of battery to use for a solar battery bank?

And where can I find them at a decent price in central Florida?
And what is an appropriate gauge for the battery cables?

admin answers:

HEY READ THIS ARTICLE … I have attached the link too … I like the question … Wanted to learn … So i looked up 🙂

Solar Power 101
Batteries

By Jeffrey Yago, P.E., CEM

This article is the first in a series of what will be a beginner’s course in solar electricty. Simultaneously we have instituted a Home Energy Information (www.homeenergy.info) section on our website where you can ask questions of Jeff Yago, the author of this series. Yago is a licensed professional engineer and certified energy manager who has writtten many energy articles for BHM. He has extensive solar thermal and solar photovoltaic system design experience, and is author of Achieving Energy Independence — One Step At A Time, which includes many solar system wiring examples. It is available from the Backwoods Home Bookstore or by calling 804-457-9566. Those interested in solar electricity will want to save these articles for future review when planning your solar system.

I am getting numerous requests from readers wanting very specific guidance on how to install their own solar electric systems. Many have already found that this process is a little like trying to build an automobile by purchasing parts from a NAPA dealer. For example, you can buy a brake drum, wheel bearing, and oil filter, but since your car does not yet exist, how do you know what parts you need, what parts will fit with other parts, and how should these parts be wired together.

During the next few issues, I will take you through the “basics” of solar system design and installation, and answer your specific questions as we go along. This course will continue on the Backwoods Home Magazine website (www.backwoodshome.com) under their new Home Energy Information (www.homeenergy.info) section. You will be able to e-mail your installation questions and offer suggestions for future home energy saving articles.

Before I can help you design your own solar power system, you have to understand that there are actually many different types of solar power systems, for many different applications.

System types
Some solar power systems are 12-volt DC due to the many low voltage RV and boating lighting and appliances available, and do not have a utility line connection. These DC only systems can be used to power several DC lights in a remote cabin, or a DC well pump in a field for watering cattle. Some solar power systems have an inverter to convert a 12, 24, or 48-volt DC battery voltage into 120-volt AC power to operate standard household appliances. Some grid connected solar power systems are designed for direct connection to your utility line and do not use any batteries at all.

Hybrid solar power systems can include a battery bank, a solar array, a generator, and even a wind turbine to provide power at all times with the utility grid serving only as backup. Inverters and solar arrays are available in many different styles, voltages, and wiring configurations. Some solar arrays are mounted on the roof, some on the top of a pole, and some are ground mounted, with each having different wiring rules.

If you visit a solar home that has a well designed and properly installed solar power system, you will find the concept is actually fairly simple. The hard part is knowing what wiring layout was best for this specific home, what size and quantity of each system component was required, and what wire size and fuses were needed to keep from burning down the house.

Batteries
One of the most misunderstood parts of a solar power system is the battery or battery bank, and that is where our class begins. Some solar battery banks use wet cells, like golf cart batteries, while others use sealed or gel cell batteries, and each have different temperature, mounting, and ventilation requirements.

Every battery is designed for a specific type of charge and discharge cycle. Car batteries have thin plates to keep their weight down and are designed for a heavy discharge lasting a few seconds, followed by a long period of slow re-charge. A 6-volt golf cart battery (size T-105) is the minimum battery I recommend for a residential solar application. You will need to buy these in “pairs” to make 12 volts. Golf cart batteries have very thick plates and are designed for hours of heavy discharge each day, followed by a fast recharge in only a few hours each night. This is similar to the duty cycle of a residential solar application, only in reverse. A solar battery must be able to provide long periods of deep discharge each evening and night, followed by a full recharge in only a few hours of sunlight each afternoon. Very few batteries can take a deep discharge-recharge cycle every day, and the 6-volt golf cart battery is the least expensive and easiest to find locally that can.

For some reason, everyone wants to use a sealed marine battery for their homegrown solar system. I strongly recommend that you do not. Included is a photo showing a sealed marine battery that “exploded” after being connected to a small solar charger for several months.

Even though this was a small 12-volt DC 5-amp solar charge controller powered from a single 50-watt solar photovoltaic module, this was enough energy to gradually overcharge the battery and evaporate all of the electrolyte even though this battery was “sealed.” A low electrolyte level can expose the plates which will gradually warp or “grow” in thickness as they oxidize. This can cause an internal short circuit and ignition of the hydrogen gas.

Plate damage can also occur when there is a large buildup of sediment after the upper plate areas become exposed from reduced water levels and begin to “flake” off. Most liquid acid batteries do not vent gasses while discharging. However, near the end of a typical charging cycle, when the battery is almost “full,” the sulfuric acid and water electrolyte will begin to break down into hydrogen and oxygen—a very explosive combination.

When ignited by a nearby spark or flame, an “explosion” can result, but this flash lasts only a fraction of a second, which is usually too fast to ignite nearby walls. However, this is still a very explosive reaction, with plastic battery parts becoming acid-covered shrapnel. While using a hand grinder one day in a shop, I accidentally directed the sparks towards several car batteries being charged about 30 feet away. There was a very loud explosive sound with acid and plastic hitting every wall of the large shop, yet I did not see a flame and there was no fire. Regardless, it was not a pleasant experience.

Always wear eye protection and acid proof gloves when working around batteries, and have lots of water and baking soda nearby. This will neutralize any acid spills from battery refilling and prevent further corrosive damage.

A typical 6-volt golf cart battery will store about 1 kilowatt-hour of useful energy (6 volt X 220 amp-hr X 80% discharge = 1056 watt-hours). Since this would only power two 50-watt incandescent lamps for 10 hours (2 X 50 X 10 = 1000 watt-hours), your alternative energy system will most likely require wiring several batteries together to create a battery bank. Since each golf cart battery weighs almost 65 pounds, there are weight considerations as well as battery gas venting issues to think about.

An area of a garage or storage building having a concrete floor is the most common location for a battery bank, although some large systems have their own specially designed battery room. I am going to assume you are installing a much smaller system and will only require four to eight batteries.

If you need more than the 220 amp-hr capacity contained in each golf cart battery, I suggest switching to the larger “L-16” size traction battery, having a 350 amp-hour rating, which may allow using fewer batteries. This battery is the same length and width as a golf cart battery, but is much taller and twice as heavy. This is an excellent battery for solar applications and can take very heavy charge-discharge cycling. This industrial rated battery may be more difficult to find, as it is only available from battery wholesale distributors.

Batteries can lose over half of their charge when exposed to extreme temperature swings, so be sure your proposed battery location stays in a 50° to 80° F range, or you will need to insulate the battery box. Since liquid batteries require refilling and battery terminal cleaning to remove corrosion several times each year, the floor area selected should be able to take an occasional acid spill and water wash down.

Battery venting is very important as discussed earlier, and if you build an enclosure around your batteries, it should be designed to direct all vented gasses to the outside. A 2-inch PVC pipe makes a good vent, but be sure it is located at the highest point in your battery enclosure where the lighter hydrogen gas will accumulate. Be sure it also includes a screened vent cap to keep out rain and insects. Do not locate your battery bank near a gas water heater or other open flame appliance that could ignite any accidental hydrogen accumulation.

A battery box can be built using standard 2 x 4 framing construction, with pressure treated plywood lining the interior surfaces. A hinged top door is needed for periodic battery maintenance, and should include a gasket to prevent gases from entering the room. Note how the top of the site-built battery box shown in these photos slopes up to a high rear area where two PVC vent pipes are located. The interior plywood surfaces of this wood frame construction were painted with several coats of fire and acid resistant paint. Since batteries lose capacity with lower temperatures, your batteries should not rest directly on a cold uninsulated concrete floor.

Pressure treated 2 x 4s on edge, spaced every 6 inches and covered by a fiberglass laminated concrete board, makes an excellent base for your battery box. This heavy sheet material is sold in most building supply outlets as a backing behind ceramic tile work in wet shower stalls, and is usually available in smaller 2-foot by 4-foot sizes. By careful planning, you may be able to use the entire sheet without cutting or splicing.

If you can afford to invest in the more expensive gel or absorbed glass matte (AGM) batteries, you will have more flexibility in locating your battery bank, since these batteries do not need to be refilled and do not normally generate explosive gasses. The photo shows a large battery bank with the batteries mounted close together in a vertical steel rack. You do not need a vapor proof enclosure or vent pipe when using these batteries, however they cost almost 30 percent more without providing any additional life or storage capacity.

Powered by Yahoo! Answers

Residential Solar Power System Why Is The World Not Accepting This Concept Yet?

All of us agree that our using the natural resources much too fast is contributing to the deterioration of our Planet. We also agree that unless we ration water, oil, and electricity, we will find ourselves very soon with no other choice but learn to live without it. Thus, people are avidly searching for alternatives for renewable energy, as well as methods of conserving rationing what we have left on the Planet. Nothing, though, seems to work the way as planned.

What Is The Place Of The Residential Solar Power System In This Scenario?

The residential solar power system looks like a good alternative for the electricity shortage problem. Billions have already shifted to solar power systems in their homes and offices and find it pretty good. What is, then, preventing the states and countries the world over to shift to this alternative and stop the pressure on the non-renewable energy sources?

The detrimental factor is the cost. The charge for installing a residential solar power system to support the whole household’s needs for electricity is quite high. However, if you look at it from the larger picture point of view, you will see that the cost of the installation can be recovered within two years only. Thereafter, the electricity you use would be completely free. This can easily save you about 1500 per year which is not a small amount.

In spite of the benefits, residential solar power systems are still on the threshold of acceptance by the majority of the world. It is true that there are billions of people out there, who have shifted to residential solar power systems, are happy with their choice. Nevertheless, the movement is yet to gather real momentum.

It is expected that the technology advancement will bring down the cost considerably in the near future as well as make the solar panels smaller and more powerful. This will enable people to use these panels not only for their residential solar power system but also for their cars, boats, gardens and so on.

There will come a day, in the not too distant future, when residential solar power systems would be the conventional style and the hydro-power the exception. When that day will come, we will be able to give our Planet that has been supporting us for so many thousands of years, some respite to regenerate and breathe. Hope that day will come before it becomes too late.