Discussion
Your Questions About Solar Energy For Kids
Laura asks…
How could I get an insight into renewable energy, with possibly a summer internship?
I’m 16, and will be 17 by the summer, I’m still in Secondary school and I would really like to get some sort of insight into renewable energy over the summer, as I would like to persue a career in that field. I live in Ayr in Scotland, so it would have to be near there possibly out to glasgow. I’ve no idea how to go about it, and I don’t know what company I could go to either. The company I could think of is EDF Energy. I thought of maybe writing an email and asking if I could come in and maybe help out, getting coffee etc. Any help would be great!
admin answers:
Hi Alice. Not being from Scotland, or the UK, I would offer two suggestions. First, get a subscription to a magazine called, “Home Power.” We started reading it 13 years ago, and 12 years ago we went to one of the energy fairs listed in the magazine. Today our home is powered by the wind and sun, and we teach solar power seminars at the local schools, and host field trips to our home for the kids regularly. You interest is a bit deeper than just setting up some panels, and that’s great. Any possibility of finding your way into an internship would pretty much require you have some expertise in the area, not schooling, just better than basic understanding. Starting with that magazine is a great first step. In the back is a calander section that lists happenings, such as fairs.
There is a really big fair each year in Aberdeen each May, I don’t know if you can work out a trip there, but the great thing about a fair is you can learn a lot quickly, and meet just about anyone worth meeting if you want to get involved somehow. The fair we went to had the entire editing staff for that magazine in one booth, and since then I’ve contributed a couple articles for them they have published. There might be other fairs closer to your home, but I’ve clipped the website to the group hosting the Aberdeen one below for you. Try googling, “Energy Fairs in Scotland.”
Any up and coming technology or business is always looking for someone like yourself, who is interested in the technology or work, has energy and some knowledge, and wants to help. The job facing you is just connecting with the right people. An energy fair is the best place to go if you can get to one and have an interest in working in renewable energy. The second link is for a listing service that have some energy fairs listed in Scotland, worth looking into in your case. It’s a great field Alice, and I encourage you to get involved any way you can. Start by learning all you can about the technology. Take care, Rudydoo
Charles asks…
what do i need and how do i make a model solar car?
year 12 science assignment. needs to be fully functional. currently have balsa wood, motor, 4 solar panels (variable is the amount of panels), axels, wheels. needs to be simple in order to gain best results. only counts for 20% of the assignment, theory is 80%. theory is the research etc behind solar energy.
admin answers:
Do the research, im sick of kids asking me to do their homework.
Powered by Yahoo! Answers
Your Questions About Solar Energy Generator Companies
Linda asks…
Do you believe that solar energy could power the entire USA? Are oil companies preventing solar energy?
Are the oil and nuclear industries tamping down on the development of new renewable energies to protect their own industries? Are renewable energies actually not viable at all?
admin answers:
During Bill Clinton’s administration, his energy supervisor had a plan to power the Southern and Western United States with Solar panels installed on the roofs of home owners. The Middle and Eastern United States with water, wind and Nuclear plants. It would of basically supplied our country with electric without fossil fuels. They fired him!
Next Point: America is sitting on the largest supply of Natural gas in the world. Natural gas is also made from our sewage plants and from dairy industries (manure). This can be used to power engines connected to generators to produce energy stopping green house gases from just going into the air. Some dairies are already doing this to power their businesses. Why are we going with ethanol which is impractical to power vehicles when natural gas/propane powered vehicles are clean burning and efficient?
Mary asks…
What is the least expensive way and how to have electricity independent of city services for a residence?
I want to set up a house, at first i thought of solar and generator but was not specific enough, totally independent of electric, water ect of city services.
I am in Mexico so plenty of sun, a bit of wind or breeze every day.
Also on a budgeted income this needs to be cost effective.
The house has 3 bedrooms, living room kitchen, dining room and 2 bathrooms.
Made with cement an brick and tile floors.
Ask a question if I have not adressed it and I will add it in details, Thanks you.
Wonderful help and ideas I want to say thank you to all.
For more info our house is now
water heater, stove: propane
refrigerator: electric
several fans to cool down the house as my wife is from USA and a mother who is ill that need to stay not too hot.
Mexico actaully is very conservative in energy.
All electric is turned off and unplugged when not in use.
Water heater is not on, (not even a pilot) when not in use, for showers light 30 min prior.
My wife tried this in the states.
it cut her bill down by 7/8th cost of her monthly bills in energy use.
I just want to be able to use a air conditioner or heater without having a quadruple size bill, as if energy is used past a certain point the bill jumps dramatically.
This will insure a happy wife and mother and my pocket left with a bit of change in it too still left.
Tranquility will be wonderful..haha
admin answers:
In your area solar makes the most sense, but you could start small and work up. Depending if you have any power source at all at this time? Having an alternative energy source usually means you must be willing to alter your consumption of power, sometimes drastically! But the satisfaction of being off the grid is something that is very satisfying! Even when you go without some of the things most other people have.
We started with what was there at the house we bought. A generator. Then we added a solar system. We added more panels and more batteries eventually, and upgraded the type of batteries. If I still lived there it would be great to add wind, for when there is no sun. The property is on a hill, so there is almost always a breeze somewhere! There is also a small water resource, but probably not enough to utilize in a cost effective manner. There are some great Yahoo Groups that deal with this subject matter, search them and have a great time!
I lived with solar power and a generator for seven years… My ex still lives there and the system has been in place since 1989. Still goin’ strong… Still a viable alternative. It cost the same as hooking up to the grid when we considered how many poles it would take to get the power to the house… Then the power company wanted to put a transformer in the front yard. Nope… We said “I don’t think so!” and we’re still glad we did!
Powered by Yahoo! Answers
Your Questions About Solar Generators Reviews
William asks…
are there solar radios which work?
Even if it is a cloudy day and through window glass? I’d like to get an emergency radio with a solar panel. I know there are models which have solar panels, but I don’t know if they actually provide enough power to run the radio. I tried to read through consumer reviews and for the same product some people say it works, other say it doesn’t work. Now I am confused. Any ideas where to start?
admin answers:
I’m a big fan of solar, but a solar-powered radio doesn’t seem robust enough for emergency use. Even if the solar radio charged internal batteries, what if I forgot to leave it in the sun, or the batteries went bad?
There’s a kind of radio that you wind up, and the spring spins a small generator that powers the radio for about half an hour. That would be my first choice, followed by the kind of radio that you must continuously crank to keep it running.
David asks…
I am considering a solar PV installation and I am a bit confused as to the size of the system I can have insta?
lled. One company has offered a 4 kw system and another company says 3.6 is the largest system I can have. They mention regulationG83 as set out by the DNO and if I had a 4 kw system installed they could insist it were downsized. Please help my aching head!!
admin answers:
This has to do with the Utility you are connecting to and if they have the capability to accept your pushed (unused) electricity generated.
If they are not able to accept it, they may consider modifications to their system to receive it, all at your expense of course. The extra .4 Kw (point 4) generated and the savings you get from it are probably minor compared to the Utility’s construction or modification costs to accept your pushed electricity. You would pay more than you would ever gain making this a poor choice.
So yes, if your solar contractor has calculated 3.6 it is because they based the number on the usage of your home and the connection to the utility grid. You are the “generator” of this electricity…which has to “play nice” with the utility’s existing equipment capabilities. That company used what is called “Best Practice” which they obviously considered when designing a system to meet most all of your needs and still comply with the G83 requirements.
The other company is probably accurate in the amount you consume but didn’t take into consideration all project needs start to finish. You could possibly still install this 4 Kw but remember at the end of the project you might be faced with surprise change order costs to modify for grid connection issues. Make that contractor spell that out for you and who will be responsible for those change order costs.
I found an interesting synopsis and copied this clip from it. Link for credit also included
“It would be a pity to complete an installation at a location which could not accommodate the generator output. It is for this reason that G83/1 and the ESQC Regulations limit the output of generators to 16 Amps per phase …. (You being the generator of that electricity)
and
Generators with an output in excess of 16 Amps per phase can be connected to our network, and part of the G59 procedure is a review of the effect of connecting the generator. In some circumstances we may have to carry out work on our network to accommodate a generator and part of the costs of this work are borne by the customer.”
Powered by Yahoo! Answers
Your Questions About Solar Energy Environments
Jenny asks…
Why isn’t the federal government willing to subsidize solar energy panels for homes?
Some states like TX and NJ will subsidize solar energy 40% worth.
But the technology to date has been quite costly in spite of these states’ subsidizing the cost. However, solar energy is starting to turn the corner cost-effectively in the past year or two.
Why is there no serious encouragement from the federal gov’t to encourage homeowners to install solar energy panels by offerering subsidies or rebates for installing it?
Would this be a good idea?
admin answers:
Great idea…but the time hasent come yet. I came accross a new, proven and tested home made wind power system and solar power system which eliminates our electricity bills. It was written by a Renewable energy enthusiasts Michael Harvey the diy called Earth4energy. You can get your copy to save energy and help environment while eliminating your power bills. Get it from here:
http://how-to-build-cheap-solar-energy.blogspot.com/
Steven asks…
Why is solar energy a renewable resource and also some advantages and disadvantages of using solar energy?
Please tell me some disadvantages and advantages of using solar energy. I also need to know why it is a renewable resource. Can you also tell me how much of of solar energy is left and how long it will last. Thank you so much. [Tell me some websites to vist about this information]
admin answers:
First, its all a guess but the sun will continue to shine for about another 2-4 billion years. So for all practical purposes, its eternal.
Solar energy depends on sunshine, one disadvantage is cloudy, overcast, rainy, snow etc. Days. No sunshine, no real energy. Another difficulty is converting solar energy, solar panels generate direct current (DC) and this has to be converted to AC current to run appliances, etc. In your house. In order to store solar energy, batteries are required, so the DC current from the solar panels can charge the batteries, and then the DC current must be converted to AC.
Solar panels are not cheap but the price is coming down. They also don’t last forever and can be damaged by hail, etc.
The good news is, solar energy is clean, not pollution except for the manufacture of the panels and for the moment, sunshine is still free.
I came accross a new, proven and tested home made wind power system and solar power system which eliminates our electricity bills. It was written by a Renewable energy enthusiasts Michael Harvey the diy called Earth4energy. You can get your copy to save energy and help environment while eliminating your power bills. Get it from here: http://homemadeenergyreviews.blogspot.com/
Powered by Yahoo! Answers
Your Questions About Solar Generators Portable
Lisa asks…
if you leave a car continuously running, how large an inverter can be placed on it to make electricity?
I am trying to find a cheap back-up option for portable batteries that are solar charged. Could a car with a 2L engine run a 4000w or 5000w inverter to give 240V electrical power?
I want to power a food kitchen in a caravan for 4-6 hours a day in summer at the beach. Later I would like to have enough solar panels and deep cycle batteries to do it mainly by solar, but want a cheap start-up option, and a back-up later on. Would a car be as fefficient than a generator if excess power was stored in a few deep cycle batteries.
admin answers:
What you are interested in is the capacity of your alternator, not the horsepower of the engine itself– unless you plan to drive an external generator off of the engine, e.g. Using a PTO on a tractor.
Unless you are using a vehicle designed for it, e.g. An ambulance or other vehicle with a large air or water cooled alternator, you are going to get something on the order of 50A at around 13V from the alternator, which is on the order of 650W.
The alternator is not a power-heavy device. It’s purpose is to supply the amount of juice needed to run a cars lights and electronics, and in modern engineering practice it’s not going to be oversized. What you are thinking about doing is similar to buying a clock to plug in to a wall so that you can use the second hand and a pulley to try and lift a heavy piece of furniture. You are much better off just buying an electric motor that uses the same power source. In your case, unless you have a direct drive off of your engine, that means buying a gasoline powered generator:
If you DO have something, like a bus, that has a larger alternator, I doubt that it will be cheaper to idle the vehicle’s engine. Traveling food service that I have seen either rely on a gasoline powered generator like above, or run on propane, aka lpg–this is a great solution for lighting and cooking, and you might be able to find a good, used propane powered refrigerator/freezer for around $500.
______________________________
I found this, you might find it interesting:
http://chowhound.chow.com/topics/862706
James asks…
can anyone suggest an affordable, portable solar generator?
I live in a hurricane zone. but, i hate my neighbors who use those horrific and loud generators 7/24 when we lose electricity.
admin answers:
Affordable, portable and solar “generator” sadly do not coincide; especially if you are talking about running more than a window fan. Solar power systems require a bank of wet cell batteries to charge and it’s those batteries that supply your power. They need to be connected through an inverter system that converts the direct current to alternating current… Another large and costly device.
Honda has some very quiet generators. That would be your best choice.
Powered by Yahoo! Answers
Your Questions About Solar Generator For Boat
Donna asks…
I am trying to start a business from a pontoon boat and want to know some ideas about how to power appliances.?
I want to run all at once: a mini fridge, mini freezer, and a few other small appliances. What do I need to know about inverters, generators, propane, batteries, solar panels, etc… ? Any good business advice? How do I make this idea work? What are things to consider if I want to sell food and other stuff?
admin answers:
Keep in mind, boats and any food / alcohol service have strict guidelines and regulations.
You could probably get some large battery packs charged by a generator. Look at other people who have similar setups. You could probably find out a lot by looking at an ice cream truck.
Robert asks…
How does a on board battery charger work?
Does it work off of the boat motor or does it take juice from one battery and charge the others?
admin answers:
Most boats and larger outboards have a generator on them that charges the battery while underway.
The on board battery charger works while the boat is plugged in to shore power and charges the batteries from alternating current from the dock. It does not take juice from one battery and give it to another. They have a shut off to prevent overcgarging.
Solar chargers can be used in good weather to keep batteries up during the day.
Powered by Yahoo! Answers
Your Questions About Solar Energy Generators
Sandy asks…
How to design solar refrigerator in ships?
I’m planning to use the absorption refrigeration system. My target is to freeze 1000kg of fish in fisherman boat. I would have to design this cooling system, next calculate the cooling load, total energy needed from solar energy and then determine the suitable type of solar collector needed. Would the system workable?
admin answers:
Sorry, but the figures don’t really add up. Your 1000 kg of fish (that’s a metric tonne) will need to go into a freezer of around 1.5 cubic meter capacity. An industrial freezer of that size will need a compressor of about 1/2 hp or 400 watts running, with a much higher starting current. Solar panels in bright sunlight generate 70 mW/square inch or 10 watts/square foot. So on a bright day you will need an 8×5 square foot panel to run the compressor. Unfortunately fishing and bad weather go together, not to mention being at sea in the dark. To ensure the freezer is always being fed electricity you would need a very large battery and an inverter, as well as the solar panels. I suspect the captain of the ship would prefer to run the freezer off the generator which supplies electricity to the rest of the boat.
Thomas asks…
What are the best ways to make my home more energy efficient?
Should i use those new light bulbs?
Have Home Depot put insulation in my attic?
Put solar energy panels on my roof?
Install windmills in my backyard?
admin answers:
You can change to CFL’s to save a little.
IF your house NEEDS more insulation, this is the most efficient addition. Also, caulk as needed to stop air leaks.
Solar panels have their place, BUT you need a lot of OTHER parts to use them, and their efficiency is currently too low to make them cost effective for most people in a non-commercial use.
To operate PROPERLY, a wind generator, NOT wind mill, MUST be a minimum of 20 feet HIGHER than any nearby trees or structures AND you must have fairly steady and heavy winds to produce enough power to make it cost efficient. It ALSO requires many additional parts.
Powered by Yahoo! Answers
Your Questions About Solar Generators Hawaii
Donald asks…
whats a better form of solar energy?
the sterling engine or Photovoltaics?
explain why at least people!
admin answers:
Solar Energy
I INTRODUCTION
Solar Energy, radiation produced by nuclear fusion reactions deep in the Sun’s core (see Nuclear Energy). The Sun provides almost all the heat and light Earth receives and therefore sustains every living being.
Solar energy travels to Earth through space in discrete packets of energy called photons (see Electromagnetic Radiation). On the side of Earth facing the Sun, a square kilometer at the outer edge of our atmosphere receives 1,400 megawatts of solar power every minute, which is about the capacity of the largest electric-generating plant in Nevada. Only half of that amount, however, reaches Earth’s surface. The atmosphere and clouds absorb or scatter the other half of the incoming sunlight. The amount of light that reaches any particular point on the ground depends on the time of day, the day of the year, the amount of cloud cover, and the latitude at that point. The solar intensity varies with the time of day, peaking at solar noon and declining to a minimum at sunset. The total radiation power (1.4 kilowatts per square meter, called the solar constant) varies only slightly, about 0.2 percent every 30 years. Any substantial change would alter or end life on Earth.
II INDIRECT COLLECTION OF SOLAR ENERGY
People can make indirect use of solar energy that has been naturally collected. Earth’s atmosphere, oceans, and plant life, for example, collect solar energy that people later extract to power technology.
The Sun’s energy, acting on the oceans and atmosphere, produces winds that for centuries have turned windmills and driven sailing ships (see Wind Energy). Modern windmills are strong, light, weather-resistant, aerodynamically designed machines that produce electricity when attached to generators.
Approximately 30 percent of the solar power reaching Earth is consumed by the continuous circulation of water, a system called the water cycle or hydrologic cycle. The Sun’s heat evaporates water from the oceans. Winds transport some of the water vapor from the oceans over the land where it falls as rain. Rainwater seeps into the ground or collects into streams or lakes and eventually returns to the ocean. Thus, radiant energy from the Sun is transformed to potential energy of water in streams and rivers. People can tap the power stored in the water cycle by directing these flowing waters through modern turbines. Power produced in this way is called hydroelectric power. See Waterpower; Dam.
The oceans also collect and store solar energy. A significant fraction of the Sun’s radiation reflects or scatters from the water’s surface. The remaining fraction enters the water and rapidly diminishes with depth as the energy is absorbed and converted to heat or chemical energy. This absorption creates differences in temperature between layers of water in the ocean called temperature gradients. In some locations, these differences approach 20°C (36°F) over a depth of a few hundred meters. These large masses of water existing at different temperatures create a potential for generating power. Energy flows from the high-temperature water to the low-temperature water (see Thermodynamics). The flow can be harnessed, to turn a turbine to produce electricity for example. Such systems, called ocean thermal energy conversion (OTEC) systems, require enormous heat exchangers and other hardware in the ocean to produce electricity in the megawatt range. Almost all of the major United States OTEC experiments in recent years have taken place in Hawaii.
Plants, through photosynthesis, convert solar energy to chemical energy, which fuels plant growth. People, in turn, use this stored solar energy through fuels such as wood, alcohol, and methane that are extracted from the plant life (biomass). Fossil fuels such as oil and coal are derived from geologically ancient plant life. People also eat and digest plants, or animals fed on plants, to obtain energy for their bodies.
III DIRECT COLLECTION OF SOLAR ENERGY
People have devised two main types of artificial collectors to directly capture and utilize solar energy: flat plate collectors and concentrating collectors. Both require large surface areas exposed to the Sun since so little of the Sun’s energy reaches Earth’s surface. Even in areas of the United States that receive a lot of sunshine, a collector surface as big as a two-car garage floor is needed to gather the energy that one person typically uses during a single day.
A Flat Plate Collectors
Flat plate collectors are typically flat, thin boxes with a transparent cover that are mounted on rooftops facing the Sun. The Sun heats a blackened metal plate inside the box, called an absorber plate, that in turn heats fluid (air or water) running through tubes within the collector. The energy transferred to the carrier fluid, divided by the total solar energy that falls on the collector, is called the collector efficiency. Flat plate collectors are typically capable of heating carrier fluids up to 82°C (180°F). Their efficiency in making use of the available energy varies between 40 and 80 percent, depending on the type of collector.
These collectors are used for water and space heating. Homes employ collectors fixed in place on roofs. In the Northern Hemisphere, they are oriented to face true south (± 20°); in the Southern Hemisphere, they are oriented to face north. For year-round applications such as providing hot water, they are tilted relative to the horizontal at an angle equal to the latitude ± 15°.
In addition to the flat plate collectors, typical hot-water and space heating systems include circulating pumps, temperature sensors, automatic controllers to activate the circulating pump, and a storage device. Either air or a liquid (water or a water-antifreeze mixture) can be used as the fluid in the solar heating system. A rock bed or a well-insulated water storage tank typically serves as an energy storage medium.
B Concentrating Collectors
For applications such as air conditioning, central power generation, and many industrial heat requirements, flat plate collectors cannot provide carrier fluids at high enough temperatures to be effective. They may be used as first-stage heat input devices; the temperature of the carrier fluid is then boosted by other conventional heating means. Alternatively, more complex and expensive concentrating collectors can be used. These devices reflect the Sun’s rays from a large area and focus it onto a small, blackened receiving area. The light intensity is concentrated to produce temperatures of several hundred or even several thousand degrees Celsius. The concentrators move to track the Sun using devices called heliostats.
Concentrators use curved mirrors with aluminum or silver reflecting surfaces that coat the front or back surfaces of glass or plastic. Researchers are developing cheap polymer films to replace the more expensive glass. One new technique uses a pliable membrane stretched across the front of a cylinder and another across the back with a partial vacuum between. The vacuum causes the membranes to form a spherical shape ideal for concentrating sunlight.
Concentrating solar energy is the least expensive way to generate large-scale electrical power from the Sun’s energy and therefore has the potential to make solar power available at a competitive rate. Consequently, government, industry, and utilities have formed partnerships to reduce the manufacturing costs of concentrators.
One important high-temperature application of concentrators is solar furnaces. The largest of these, located at Odeillo in the Pyrenees Mountains of France, uses 63 mirrors with a total area of approximately 2,835 sq m (about 30,515 sq ft) to produce temperatures as high as 3200°C (5800°F). Such furnaces are ideal for research requiring high temperatures and contaminant-free environments—for example, materials research to determine how substances will react when exposed to extremely high temperatures. Other methods of reaching such temperatures usually require chemical reactants that would also react with the substances to be studied, skewing the results.
Another type of concentrator called a central receiver, or “power tower,” uses an array of sun-tracking reflectors mounted on computer-controlled heliostats to reflect and focus the Sun’s rays onto a water boiler mounted on a tower. The steam thus generated can be used in a conventional power-plant cycle to produce electricity. A U.S. Demonstration in the Mohave Desert, Solar One, operated through most of the 1980s. During the early 1990s a second demonstration, called Solar Two, used molten salt heated in the boiler to 574°C (1065°F) to produce electricity. The hot salt was stored and later used to boil water into steam that drove a turbine to produce electricity.
IV PASSIVE SOLAR HEATING
The solar energy that falls naturally on a building can be used to heat the building without special devices to capture or collect sunlight. Passive solar heating makes use of large sun-facing windows (south-facing in the Northern Hemisphere) and building materials such as brick and tile that absorb and slowly release solar heat. A designer plans the building so that the longest walls run from east to west, providing lengthy southern exposures that allow solar heat to enter the home in the winter. A well-insulated building with such construction features can trap the Sun’s energy and reduce heating bills as much as 50 percent. Passive solar designs also include natural ventilation for cooling. Shading and window overhangs also reduce summer heat while permitting winter Sun.
In direct gain, the simplest passive heating system, the Sun shines into the house and heats it up. The house’s materials store the heat and slowly release it. An indirect gain system, by contrast, captures heat between the Sun and the living space, usually in a wall that both absorbs sunlight and holds heat well. An isolated gain system isolates the heated space (a sunroom or solar greenhouse, for example) from the living space and allows the solar heat to flow into the living area via convective loops of moving air.
V SOLAR COOLING
Solar energy can also be used for cooling. An absorption air conditioner or refrigerator uses a large solar collector to provide the heat that drives the cooling process (see Refrigeration). Solar heat is applied to the refrigerant and absorbent mixture, which is combined under pressure in a container called a generator or boiler. The Sun’s heat brings the mixture to a boil. The refrigerant (often ammonia) vaporizes, rises as a gas, and reaches the condenser. There it gives off heat and returns to liquid form. As the drops of pure refrigerant fall, they trickle into the evaporator (freezing unit) where they evaporate vigorously. Evaporation requires heat energy, which comes from the surroundings, and results in cooling: The refrigerant absorbs heat from the unit and cools the space. The refrigerant, now a gas again, rejoins the mixture in the boiler to restart the process.
Absorption coolers must be adapted to operate at the normal working temperatures for flatbed solar collectors—between 82° and 121°C (180° and 250°F) Alternatively, concentrating collectors may be used.
VI PHOTOVOLTAICS
Solar cells called photovoltaics made from thin slices of crystalline silicon, gallium arsenide, or other semiconductor materials convert solar radiation directly into electricity. Cells with conversion efficiencies greater than 30 percent are now available. By connecting large numbers of these cells into modules, the cost of photovoltaic electricity has been reduced to 20 to 30 cents per kilowatt-hour. Americans currently pay 6 to 7 cents per kilowatt-hour for conventionally generated electricity.
The simplest solar cells provide small amounts of power for watches and calculators. More complex systems can provide electricity to houses and electric grids. Usually though, solar cells provide low power to remote, unattended devices such as buoys, weather and communication satellites, and equipment aboard spacecraft.
VII SOLAR ENERGY FROM SPACE
A futuristic proposal to produce power on a large scale envisions placing giant solar modules in geostationary Earth orbit. Energy generated from sunlight would then be converted to microwaves and beamed to antennas on Earth for conversion to electric power. The Sun would shine on a solar collector in geostationary orbit almost 24 hours a day; moreover, such a collector would be high above the atmosphere and so would receive the full power of the Sun’s rays. Consequently, such a collector would gather eight times more light than a similar collector on the ground. To produce as much power as five large nuclear power plants (1 billion watts each), several square miles of solar collectors, weighing 10 million pounds, would need to be assembled in orbit. An Earth-based antenna five miles in diameter would be required to receive the microwaves. Smaller systems could be built for remote islands, but the economies of scale suggest advantages to a single large system (see Space Exploration).
VIII SOLAR ENERGY STORAGE DEVICES
Because of the intermittent nature of solar radiation as an energy source, excess solar energy produced during sunny periods must be stored. Insulated tanks commonly store this energy in hot water. Batteries often store excess electric energy produced from wind or photovoltaic devices. One possibility for the future is the use of excess solar-generated electric energy as a supplemental source for existing power networks. Uncertain economics and reliability, however, make this plan difficult to implement.
Count Dracula
Maria asks…
AUWE: Eh! Kono and the rest of the Hawaii Gang: I just got the News:?
So I am here on the mainland–stuck for life I guess. But my Mana, my Kuleana, my heart is still in Hawaii. We saw no news, no protest, no nothing about Lana’i until everything was pau. This rich guy buys it for peanuts. Chump change to him, and his billions. Can you please tell me more?
Did he agree to employ the Lana’i people who have been there for ever? Will he treat the land and people with respect? Is he going to make more hotels or will he get feed back from the locals? I hope to a certain extent, the island will remain the same, or better? Did OHA make any request to leave the land in Hawaiian hands? Any idea what is going to change? My hope would have been to at least add $400 million to the price–or an even $Billion, and then put the rest of the money in a special fund for Hawaiian homes. Please, can you just share and news, or ideas, or what went down, and the future of Lana’i? Mahalo Nu’i Loa E Hawai’i Kuleana
admin answers:
Hey, you ask good question, an I try to help,ok? So, Lanai, yeah got bought again by nother haole, ok? So, nothing new, yeah? Hea the thing, Hawaiian royalty and alii not shy bout selling land to anybody with money, ok? Same thing happen tho Niiha, bought for 10K in gold, and lotta otha parts of Hawaii, ok? So, been private owner since 1870’s, so nothing new bout that, ok? So, very little private land on Lanai, or any otha Hawaiian island, ok? Now, Hawaiian people set up for this by fact that they neva allow to own land by Alii, ok? So neva inna hand of Hawaiian people, so no big change when sold to foreigners, ok? So, what will new owner do with island, that a big question, yeah? Most of us think he not gonna do too much, maybe build some wind power electric generators, maybe a solar generation plant ova onna leeward side of island, really not know, ok? Maybe not gonna do nothing, but for sure I tell you, he gotta treat land and people with respect, cause that expected by Hawaiian people, local people, and state of Hawaii, ok?
Peace and aloha to you!
Powered by Yahoo! Answers
Your Questions About Solar Energy
Sandy asks…
Can you give me information on solar energy?
I would love to use some solar energy in my home. What can you tell me about how much it costs to begin? Is there some sort of federal tax credit? What all do I need to buy (panels, batteries, etc)? Can a homeowner do the installation or must it be done by a professional? Would also appreciate any websites for retailers of solar energy items. Thank you very much for any information.
admin answers:
When I was gainfully employed, prior to experiencing the bliss of retirement, I worked for a hardware store that marketed a solar energy system for single family residences.
The cost profile (this stuff is expensive) suggested that, if you planned to live in your home for 19 years post-installation, you would amortize the cost.
There were federal and California state tax credits available at the time, as well as a rebate from Pacific Gas and Electric (primary utility provider in No. Calif.) which produced a net cost near $20K.
You need to determine if your local power company is obligated to buy back surplus power from your solar system first. If they are not legally required to do so, that will make amortization more difficult.
William asks…
Where does the solar energy go during photosynthesis?
Where does the solar energy go during photosynthesis? Mark every correct answer.
A. The energy is stored in the carbon dioxide released during respiration.
B. Some of the energy is not used, but wasted.
C. Some of the energy is stored in the covalent bonds of the complex sugar molecules.
D. The energy is used to release water from the plant.
admin answers:
Its C.
The solar energy is trapped and converted into chemical energy by the chlorophyll in the leaf. The chemical energy is then used to Produce glucose along with Oxygen as bi-product… The glucose is also sometimes stored… So the answer is C
Powered by Yahoo! Answers
Your Questions About Solar Energy Generator Wikipedia
Paul asks…
What are good materials to generate electricity from?
I’m thinking of generating electricity from various objects and comparing the results as a science project. However, I need examples of things to test and compare. For example, food (we have potatoes and lemons already), solutions, and other materials that would normally generate electricity. The person who answers best within the first 2 hours of my posting will get Best Answer. Thanks!!
By the way, Im sorry I did not specify. However I need to basically know what materials to use to power a lightbulb for example. I need more than food products to do this experiment but I’m not sure what else to use.
admin answers:
How exactly are you generating electricity?
If you are making a battery by putting two metal probes into a piece of fruit or solution, then you are really generating electricity from the metal. The fruit or solution you are talking about is just supplying the electrolyte and acid to break down the metals and transfer the ions. The actual energy is coming from the energy that is chemically stored in the metal, not from the fruit itself. You should explain this as part of the science project. In that case, you could try oranges, mangoes, peaches, salt water, vinegar, carbonated water, and pop. You could measure the pH of the fruit or fluid, and measure the resistance with an ohmmeter. Electric generation might have more to do with acidity and resistance than anything else.
There are other ways of generating electricity and I’m not sure if you are considering any of these because you did not specify. You can make static electricity by rubbing different materials together (such as plastic and fur). Electricity can also be generated from food by making fuel such as ethanol out of it, or burning it directly as biomass. Any food will do this, but might be hard to do as part of an experiment.
If you give more details about exactly how your are making electricity maybe we can help you more.
Edit:
I’m still not exactly sure how you are planning on doing your project. Electricity for home use is produced by generators. Generators require a power source to turn them. Usually this is done with turbines. Turbines can be wind or hydroelectric turbines, or they can be steam powered. Steam power can be run by anything that burns or produces heat: coal, wood, food, alcohol from food, leaves, fibers, grass, etc. Steam turbines can also be run by nuclear energy. You would not be able to actually run these as an experiment by yourself, however, because it would take a lot of time money, and safety precautions. Even a homemade wind turbine would be expensive to make. As an experiment, however, you could burn a number of different materials to heat a pot of water and see how much heat a certain weight of each material produces.
If you are trying to actually power a lightbulb by yourself for your project, you have fewer options. Use an array of solar cells. You could use a bicycle powered dynamo (small generator) to run a light–which is ultimately powered by the food you eat. Lastly, you can make your own battery. That’s what I was tryint to explain above with sticking two metals into a fruit. Basically you need two metals (like two coins of different type) and an electrolytic liquid (which helps if its acidic). Most of our household elecrolytes and acids are food-grade, but you can use battery acid which can be bought at the hardware store. Look at the wikipedia article about homemade battery cells. The problem with homemade batteries is that they are very inefficient and you might have trouble powering a lighbulb with one unless you hook up a whole bunch of them together.
Susan asks…
What are some energy transformation devices?
For my physics investigation i have this question:
Identify the various energy transformations by which electrical energy can be produces from other forms of energy.
I got: Chemical energy to electrical energy
Sound energy to electrical energy
Gravitational potential energy to electrical energy
Mechanical energy to electrical energy
Heat to electrical energy
Wind energy to electrical energy
Kinetic energy to electrical energy
Strain to electrical energy
Radiation to electrical energy
Light energy to electrical energy
then theres the question:
Name some of the technological devices that employ each method.
I’ve looked around but I only got battery, Fuel cells, microphone, telephone, transducer, solar panels, solar cells, turbine, motor.
What are some others for each point in the first question?
admin answers:
There are many different machines and transducers that convert one energy form into another. A short list of examples follows:
Thermoelectric (Heat → Electric energy)
Geothermal power (Heat→ Electric energy)
Heat engines, such as the internal combustion engine used in cars, or the steam engine (Heat → Mechanical energy)
Ocean thermal power (Heat → Electric energy)
Hydroelectric dams (Gravitational potential energy → Electric energy)
Electric generator (Kinetic energy or Mechanical work → Electric energy)
Fuel cells (Chemical energy → Electric energy)
Battery (electricity) (Chemical energy → Electric energy)
Fire (Chemical energy → Heat and Light)
Electric lamp (Electric energy → Heat and Light)
Microphone (Sound → Electric energy)
Wave power (Mechanical energy → Electric energy)
Windmills (Wind energy → Electric energy or Mechanical energy)
Piezoelectrics (Strain → Electric energy)
Acoustoelectrics (Sound → Electric energy)
Friction (Kinetic energy → Heat)
http://en.wikipedia.org/wiki/Energy_transformation
ALSO, have a look at
http://www-bioc.rice.edu/pblclass/6th%20grade/Matter%20&%20Energy/Energy%20Transformation%20Game.pdf
I hope I’ve helped you,
Angela!!!
Powered by Yahoo! Answers
Your Questions About Solar Generators Costco
Steven asks…
How far could a fully charged Hybrid ( say Pyrus ) go when out of fuel?
admin answers:
The one EV car I currently have (have 2 vehicles that run on hydrogen also) I converted from a vw bug and is free to charge. As I live completely off the grid all my electricity comes from solar panels and 2 wind generators, which I also built.
However I did charge up at Costco in Carlsbad California (I actually only drove up there to fill up) if I remember right it was around $2.00
Not sure if you’re interesting in doing it yourself, but I’d be willing to walk you step by step threw the conversion. I’ve converted 3 of my own cars (a datsun truck, ford ban, and a vw bug) and a few for neighbors. I’ve also converted cars to run on hydrogen, ethanol and biodiesel, by far EV is the easiest.
If you’re interested here’s what it would entitle…
– The engine compartment is first cleaned out of any gasoline components.
– Electric components are then installed in exchange.
– A battery bank is built and incorporated.
– Existing starter and driving systems are connected.
– Turn the key, step on the gas pedal sending more energy to the electric motor, & thus more power to the drive system, which in return creates more speed, more acceleration.
– The system has normal automotive top speeds and acceleration, typical to the vehicle your modifying. If your top speed was 85 mph and your acceleration was 1 mile per min, then this will be what your left with after the conversion.
The methods are extremely simple, making the process possible for anyone, everyone, ANYWHERE.
Typical tools, hardware & supplies are used, making access to parts available for all.
Electric Conversions can be easily accomplished in ANY model vehicle, even tractors, Generators, types of machinery, etc.
Project lengths range from 1 day to 1 month.
If you’re interested I wrote a guide on it which is available at www agua-luna com
My last EV conversion ran me about $1400. Everything is available online. I have a how to do it yourself guide available at www agua-luna com that will walk you step by step through the process. If you have ANY questions feel free to contact me through the site. Here’s a list of what you’d need…
Advanced DC Motor
The motor is an 8″ Advanced DC series-wound motor. It weighs 107 pounds and is rated at 68 peak horsepower. These motors are available in several sizes.
Adaptor plate
The adaptor plate mates the motor to the transmission. It is constructed of 1/2 inch aluminum and is pre-drilled with bolt hole patterns for both the motor and transmission. An aluminum spacer is also used for proper spacing between the shafts of the transmission and motor. Adaptor plates are available for many cars.
DC Motor Controller
The controller regulates current going to the motor. It is a solid-state device that uses a pulse width modulator (PWM) that sends short bursts of current to the motor at a rate of 15 kHz. Controllers are available from both Curtis and DCP.
Potbox (Potentiometer)
The potbox is a 5K ohm throttle between the controller and the accelerator, similar to the way a sewing machine pedal works. The potbox’s lever arm is attached to the existing accelerator cable.
Main Contactor
An electric relay that serves the same purpose as the ignition switch in a gas car. When the key is turned to the start position, the contactor closes the circuit to allow current to flow to the controller.
Circuit Breaker
A safety device that shuts down power for servicing or during an emergency. The circuit breaker is installed under the hood and can be switched both off and on from the drivers seat with an extension or cable.
Main Fuse
The main fuse protect the system from high voltage spikes. A fuse should be installed at each battery box or group of batteries.
Shunt
A shunt is placed in series within the wiring as a means to connect meters. Shunts are available in different sizes for both high and low power configurations.
Charger interlock
A relay that keeps the circuit open so nobody will inadvertantly drive off with the charge cord plugged into the car.
DC/DC Converter
The DC/DC converter is similar in function to a gas car’s alternator. It charges the 12 volt accessory battery by chopping voltage from the main battery pack down to 13.5 volts.
If you interested I offer several DIY alternative guides to walk you step by step threw EV conversion process at agua-luna com or
www agua-luna com
Hope this helped, feel free to contact me personally if you have any questions if you’d like assistance in making your first self sufficient steps, I’m willing to walk you step by step threw the process. I’ve written several how-to DIY guides available at www agua-luna com on the subject. I also offer online and on-site workshops, seminars and internships to help others help the environment.
Dan Martin
Alterative Energy / Sustainable Consultant, Living 100% on Alternative & Author of How One Simple Yet Incredibly Powerful Resource Is Transforming The Lives of Regular People From All Over The World… Instantly Elevating Their Income & Lowering Their Debt, While Saving The Environment by Using FREE ENERGY… All With Just One Click of A Mouse…For more info Visit:
www AGUA-LUNA com
Stop Global Warming!!!
William asks…
Where can I find sites on how to convert my car to full electric?
I’m interested in both the conversion and the battery technology involved…
admin answers:
The one EV car I currently have (have 2 vehicles that run on hydrogen also) I converted from a vw bug and is free to charge. As I live completely off the grid all my electricity comes from solar panels and 2 wind generators, which I also built.
However I did charge up at Costco in Carlsbad California (I actually only drove up there to fill up) if I remember right it was around $2.00
Not sure if you’re interesting in doing it yourself, but I’d be willing to walk you step by step threw the conversion. I’ve converted 3 of my own cars (a datsun truck, ford ban, and a vw bug) and a few for neighbors. I’ve also converted cars to run on hydrogen, ethanol and biodiesel, by far EV is the easiest.
If you’re interested here’s what it would entitle…
– The engine compartment is first cleaned out of any gasoline components.
– Electric components are then installed in exchange.
– A battery bank is built and incorporated.
– Existing starter and driving systems are connected.
– Turn the key, step on the gas pedal sending more energy to the electric motor, & thus more power to the drive system, which in return creates more speed, more acceleration.
– The system has normal automotive top speeds and acceleration, typical to the vehicle your modifying. If your top speed was 85 mph and your acceleration was 1 mile per min, then this will be what your left with after the conversion.
The methods are extremely simple, making the process possible for anyone, everyone, ANYWHERE.
Typical tools, hardware & supplies are used, making access to parts available for all.
Electric Conversions can be easily accomplished in ANY model vehicle, even tractors, Generators, types of machinery, etc.
Project lengths range from 1 day to 1 month.
If you’re interested I wrote a guide on it which is available at www agua-luna com
My last EV conversion ran me about $1400. Everything is available online. I have a how to do it yourself guide available at www agua-luna com that will walk you step by step through the process. If you have ANY questions feel free to contact me through the site. Here’s a list of what you’d need…
Advanced DC Motor
The motor is an 8″ Advanced DC series-wound motor. It weighs 107 pounds and is rated at 68 peak horsepower. These motors are available in several sizes.
Adaptor plate
The adaptor plate mates the motor to the transmission. It is constructed of 1/2 inch aluminum and is pre-drilled with bolt hole patterns for both the motor and transmission. An aluminum spacer is also used for proper spacing between the shafts of the transmission and motor. Adaptor plates are available for many cars.
DC Motor Controller
The controller regulates current going to the motor. It is a solid-state device that uses a pulse width modulator (PWM) that sends short bursts of current to the motor at a rate of 15 kHz. Controllers are available from both Curtis and DCP.
Potbox (Potentiometer)
The potbox is a 5K ohm throttle between the controller and the accelerator, similar to the way a sewing machine pedal works. The potbox’s lever arm is attached to the existing accelerator cable.
Main Contactor
An electric relay that serves the same purpose as the ignition switch in a gas car. When the key is turned to the start position, the contactor closes the circuit to allow current to flow to the controller.
Circuit Breaker
A safety device that shuts down power for servicing or during an emergency. The circuit breaker is installed under the hood and can be switched both off and on from the drivers seat with an extension or cable.
Main Fuse
The main fuse protect the system from high voltage spikes. A fuse should be installed at each battery box or group of batteries.
Shunt
A shunt is placed in series within the wiring as a means to connect meters. Shunts are available in different sizes for both high and low power configurations.
Charger interlock
A relay that keeps the circuit open so nobody will inadvertantly drive off with the charge cord plugged into the car.
DC/DC Converter
The DC/DC converter is similar in function to a gas car’s alternator. It charges the 12 volt accessory battery by chopping voltage from the main battery pack down to 13.5 volts.
If you interested I offer several DIY alternative guides to walk you step by step threw EV conversion process at agua-luna com or
www agua-luna com
Hope this helped, feel free to contact me personally if you have any questions if you’d like assistance in making your first self sufficient steps, I’m willing to walk you step by step threw the process. I’ve written several how-to DIY guides available at www agua-luna com on the subject. I also offer online and on-site workshops, seminars and internships to help others help the environment.
Dan Martin
Alterative Energy / Sustainable Consultant, Living 100% on Alternative & Author of How One Simple Yet Incredibly Powerful Resource Is Transforming The Lives of Regular People From All Over The World… Instantly Elevating Their Income & Lowering Their Debt, While Saving The Environment by Using FREE ENERGY… All With Just One Click of A Mouse…For more info Visit:
www AGUA-LUNA com
Stop Global Warming!!!
Powered by Yahoo! Answers
Your Questions About Solar Energy International
John asks…
What are the incentives offered in India for alternate energy.?
Specially for wind and solar energy, on importing key components.
admin answers:
Plenty offered for India, including the Carbon Offset trading scheme. Also a number of initiatives from the world bank for India and Asia as a whole (reference below)
Some stuff on wind and solar also included in second link go right near the bottom, specifically
Guaranteed Prices. Tamil Nadu and several other State electric boards have agreed to purchase wind power at about 6.4 cents per kilowatthour.(36)
Tax Benefits. These include:
* Five-year tax holidays on income from sales of electricity
* Accelerated depreciation of 100 percent on investment in capital equipment in the first year
* Excise duty and sales tax exemptions for wind turbines
* Import duties on a variety of components waived
* Moving toward a production tax incentive to encourage performance.
Project Financing. India Renewable Energy Development Agency (IREDA) was formed in 1987 to provide assistance in obtaining loans from the World Bank, the Asian Development Bank, and the Danish International Development Agency (DANIDA). This included acting as a conduit for World Bank Loans totaling $78 million specifically for wind.
David asks…
why the indian government is sooo lazy in setting up solar power plants in india when we have scorching sun?
almost throughout the year except in winter and monsoon. while germany and other countries which are relatively very cold climatic use solar energy to a great extent as compared to india….
admin answers:
It’s a fair question… There are a number of reasons…
1. Political Pressures.
In politics, governments don’t have a lot of time to produce results; they are judged very quickly for failures and inactivity. The fact is, the Indian government are poor, and they have many, many demands on the budget. Thus, long term items like solar energy get pushed down the list while other more pressing issued are dealt with. As a group, the Indian people are demanding activity on a number of other issues, so one cannot blame the Indian government for concentrating on these at the expense of others for which there is not a large constitutency.
1. Budget Pressures.
Hand in hand with point # 1, solar energy is extremely expensive to produce, and the total wattage produced per unit of cost is low compared to conventional fuels. The technology has not progressed to the point where solar energy is a cost effective alternative to conventional fuels; thus, it becomes something only more wealthy nations can afford to do to placate interest groups.
3. Alternatives.
India is one of the nations that have been exempted from the Kyoto Accords on Global Warming. Given their exempted position, there is no international (or domestic) pressure for India to diversify its energy output.
To summarize, given the high cost, low output of energy, political and budgetary reasons for deferring the choice, it’s not surprising that India have decided against widespread involvement with Solar energy.
Hope this helps. Cheers.
Powered by Yahoo! Answers
Your Questions About Solar Generators Reviews
Lizzie asks…
Are you familier with the Power4Home solar panel kit and wind generator? I know it’s just info is it any good?
I’ve always said if it sounds too good to be true, it’s not.
Anyone order this kit?
What do you think?
Thanks!
Thanks Amy, don’t want to pick a best answer yet but yours was great.
Thanks Roderick you both deserve best answer.
It’s kinda like judging a talent contest where everyone is great.
admin answers:
Many of the build it yourself sites are offering a very generic booklet that does not contain useful information. You can read a great review of one of them at http://www.nlcpr.com/Deceptions6.php
Excerpt from their review:
“The gist of their claims is this:
* Get cheap broken or used solar cells on e-bay. They show screen prints of auctions starting at 99 cents but all you e-bayers know that the prices gets bid up considerably. Solder it all together and make your panels.
* Ask forklift operators for free, used batteries (assuming they are going to throw out batteries that still function)
* Get a DC motor from e-bay and make a wind mill from it.”
Even if you do find a good instruction manual, home made panels cannot be connected to the electric grid, as they are not UL listed. If you really want to add solar to your house, buy factory made panels. The price has dropped a lot this year, and with rebates and credits, they are becoming more affordable. Check out the DSIRE site below to see any rebates available in your area.
John asks…
If we end up building a base on moon, what do you think will be a, if any, beneficial side effect for mankind?
They say that after we build a base we will be able to build solar satelites that feed the earth with solar energy…kind of like solar harvesters…
Statistics predict that harvesting just 1% of the solar energy on the moon would end our fossil fuel dependency world-wide. Thoughts.
After reviewing such data it becomes a lot more apparent the usefulness of such an endeavour, instead of just a hollow idea for national prestige.
admin answers:
The cost of transportation to the moon is the major issue. If the solar cells were made on earth and transported then the project would be prohibitively expensive.
If the lunar site could manufacture the solar cells required, then the project would seem feasible. The energy required for the initial lunar base could come from nuclear driven generators. There is no environmental issues with this and in fact the cooling towers (built in the partial shade) would be enhanced over any such generator on earth.
In the long run, several separate bases could allow for experiments with toxic materials or genetic innovations to be preformed with no threat to the earth’s environment.
Powered by Yahoo! Answers
Your Questions About Solar Energy Generator Suppliers
George asks…
SOLAR PANELS what do you think?
With the current discussions re climate change & renewable energy should the goernments of the world enforce (through legislation) that all new buildings constucted have solar panels & wind generators installed that supply at least 80% of the predicted electrical usage of that particular building….. what do you think???
admin answers:
Not all building sites will have enough of a solar or wind resource to make these technologies feasible, or cost-effective. So, integrating site analysis into the construction process can help determine what combination of energy sources are appropriate for a new building.
There are many types of energy efficiency and renewable energy technologies, including biomass, and geothermal. But by far, the most effective renewable technology is the practice of energy efficiency, and proper resource management. Construction practices that focus on reducing heating, cooling and electric loads and ensuring proper ventilation are key to sustainable living. Once buildings are well insulated, tight and efficient, renewable energy systems can be adequately sized, and produce as much or more than the building needs.
There are a few issues to keep in mind though – first, while renewables are the way to go, the manufacturing processes and transportation costs still produce waste and pollution (embodied energy). Also, we need to transition to a “smart” electric grid that uses modern digital technology and is reliable, efficient and secure. For areas where individual buildings cannot generate all their power due to site restrictions, the local municipality or coops can opt to either buy or generate clean energy from green suppliers, or procure their own power.
I think legislating new construction codes would work well along with subsidies for clean technologies, but hitting the 80% mark may be too aggressive to start. The bottom line is to affect the bottom line ($ in your pocket), and make it attractive to install these technologies. Maybe this could turn out to be like FDR’s New Deal Programs during the Great Depression, where hundreds of thousands of jobs were created to build highways, schools, parks, and other infrastructure-related projects. Analogize to new green jobs in almost all sectors of the economy, but especially construction.
One final major point: remember that over 80% of the real estate inventory in the US is made of older and inefficient buildings…what about those? Retrofitting these buildings has been VERY challenging, with or without the government incentives. Improving older buildings is requires a lot of redesign, and is complicated and expensive.
Mark asks…
which is best? inverter or diesel generater.?..please answer?
For cost wise and maintenance wise which is best,i am having small office(6 systems,2 fan)
admin answers:
Of course Gintable is right. If your office has 6 computers and 2 fans and a couple of lights and a router maybe is will be something like 1000W, maybe more, depending exactly what you have. I am assuming you have no electricity, but it is possible this is just for standby when the electricity is off. In that case the inverter/battery system is called a UPS (uninteruptable power system) and you specify it for the time (minutes) you want it to support your equipment until you can get the generator started. Make sure you get a pure sinewave type. For standby I would use a petrol machine as below, as it is too small for a diesel. Some can be automatically started, but very few.
If the inverter takes this power from a 12V battery the result is ridiculous, with 83A drawn from the battery (not counting losses). A large 100AH battery will have a capacity at this current of maybe 30 minutes, but it won’t, because it will get too hot. The losses charging a battery are high, about 1.4 times the energy used. A better battery is made of 100Ah x12V units in series to get a maximum of 10A each. That will be about 96V battery, 8 or 9 of the 12V ones in series. Chosen to match the available inverters round that voltage. If you use solar panels it needs about 3.7KW of panels to recharge the 8 hours of operation in the 4 hours of effective full sun you may have if you are lucky. That is a lot, say 20 panels at maybe 200W per panel. The fuel is zero, but really you need a generator too if there is no reliable other power available.
Th capital cost is high. It will need a significant and expensive battery that needs quite a lot of charge each day. Battery life, 3-10 years depending on quality and how well they are looked after. Solar panels, you hope for 20 years, but the capacity drops over time.
There are certainly issues with a diesel or petrol generator. This size is a bit small for a diesel generator. The single cylinder types are not attractive because they are noisy and have a lot of vibration. The idea of operating in a city area seems unreasonable. Get mains electricity if you possibly can, it is cheaper. The exhaust gas from any engine is deadly, due to the carbon monoxide, but diesels can be better with that. It will need to be exhausted up in the air to help it dissipate. This is more toxic than cyanide gas if you could compare them that way.. Engines can be put in a hole in the ground or a sound proofed building and with good exhaust silencing can be very quiet, even diesels.
A petrol generator can be quiet on its own, and they are made in these smaller sizes. The types that have an inverter in them are more expensive, but save fuel because the engine slows down when the load is lighter. Petrol engines are more expensive to run and probably have a short life compared to a larger smoother operating multi cylinder diesel. There is the greater fuel risk too.
The fuel costs for a 2KVA or 3KVA unit (I wouldn’t get smaller) delivering 1KW approx. Would be something like 150-200g per hour. Call that somewhere around 250 milli-liters of fuel per hour. Doesn’t sound much, but it is 6 liters a day, maybe 2 liters if you only run for 8 hours. The electrical mains will supply that for about 15c per KWh using US or Australian prices. Yours could be different. So for 8 hours a day in Australia it would be 2 liters costing $2.80 against 8KWh costing $1.20, about half.
This is a difficult decision, as there is no clear cut “good” solution except mains electricity, and your situation is not clear either. Look up suitable generators, visit suppliers, get quotes. You will need qualified persons to install any of these systems. You need to consult with an expert who can look into all aspects, including local regulations..
Powered by Yahoo! Answers
Your Questions About Solar Energy Materials And Solar Cells
Susan asks…
Does solar energy fit into the biomimetric philosophy?
Solar cells contain toxic chemicals and/or nanotechnology. Researching biomimicry always brings up examples of solar technology. Is this really an example of biomimicry?
admin answers:
…to mimic or emulate what is found in nature
The last I researched, the pre-industrial world did not plug their cell phones into the grid expecting them to be re-charged, electric street lights, and so forth. Nature has no grid infrastructure that supplies energy for a wide assortment of uses and devices. We humans, on the other hand, are a part of the world’s ecosystems and thus a natural entity or “nature” in our own right.
When you mention “toxic chemicals” do remember that “nature” is full of all sorts of toxins of both the organic and inorganic type. Some are byproducts of an ecosystem’s entiy or an entity’s processes, some simply are, and some are generated or created by an ecosystem’s entity for use as a tool or protective measure. On the other hand, we humans have quite a history of making/using chemicals/compounds/materials which may or may not be found in nature long after we know they are toxic to ourselves, other entities in our ecosystems, and our ecosystems themselves as we know them.
I don’t know the specifics upon which solar power is defined as biomimicry. Certainly plants turn solar power into a different energy force that supports their way of life. Although, I don’t particularly remember even the 1950’s sci-fi flicks addressing the concept of plants powering an electrical or other grid for the sharing of the energy they harness from the sun. I certainly don’t remember Dick Tracy’s wrist phone being charged on a grid powered through photosynthesis! Solar panels do convert the energy from the sun’s rays into a different form for ecosystem use. – They may not be “natural” but the houses and apartments we live in, and their contents, are certainly habitats that most of us require for a happy, healthy life.
Jenny asks…
What is a small and cheap solar cell?
I’m doing a science fair project where I find if the angle of solar cells affects how much energy is absorbed. I’ll be attaching a small solar cell to a voltage meter to measure the amount of energy the cell absorbs. I know nothing about solar cells or where to buy them. So,what type of solar cell will I need? How much will it cost?
admin answers:
Interesting project. Radio shack sells a couple in the form (wires already attatched) that would be easy for a beginner to play with. Go into any store and ask for one and they’ll show you where they are.
The thing you’re going to want to measure is probably current, rather than voltage. The voltage is more or less just a function of the materials the cell is made of (about .5V), while the current is proportional to the solar flux. A cheap multimeter will make this measurement by just putting it across the wires of the cell.
What you should find is that the power coming out of a cell varies with the sine of the angle of incidence.
Electrical power, in watts, is the volts times the amps. So you would multiply .5volts times lets say for example 50milliamps with direct on sun and get 25milliwatts.
Also, you will be measuring the amount of solar energy CONVERTED, not absorbed. To measure the amount absolbed, you would need to know the amoubnt of solar energy incident on the cell, but not reflected, and that isn’t so easy.
Powered by Yahoo! Answers
Your Questions About Solar Generators For The Home
Joseph asks…
How do you make a home nuclear generator to power electricity?
Hey. I am tired of paying the electricity bill and got fined for taking my neighbours from his pond. Turned out he never watched tv or had a computer. When his bill went from £10 a month to £150 he got suspicious and found the cable and adaptor that I had connected to his fish pond in the back garden. Anyway thats another story. I did bury the cable but obviously he unearthed it.
I know some people use solar plates to provide electricity for their home, but this costs too much. I don’t have £25.000 to spare for this stuff. Also it is a rented place so I don’t even own the roof.
I was thinking of a nuclear generator that I can build at home and use to power my electricity usage off uranium or something. I am really good with building gadgets, and know where I can get weapons grade uranium from cheap. I just need advice or a walkthrough on how to build a mini nuclear power plant in my own kitchen.
admin answers:
You likely don’t have the space to build a nuclear generator and provide adequate shielding. The uranium in a nuclear plant is basically a heat source, used to heat either water or liquid sodium which then drives an electromagnetic turbine. So you need room to put the turbine. Liquid sodium is tricky to handle — it tends to catch fire when exposed to water — and water used in a nuclear plant turns to steam, and requires some containment vessels.
You also need a place for the water or sodium to cool off after it drives the turbine. A commercial water-cooled nuclear plant uses a cooling tower on the order of 100m high (about like a 30-floor building). For residential use you don’t need a 100m tower (nor would the landlord let you install it through your roof) but you will still need some place to let the water or sodium cool.
In 1994 a boy scout who lived near Detroit, Michigan collected americium from smoke detectors and thorium from lantern mantles and built a sort of working nuclear reactor, but the radioactivity spread across his neighborhood and he never got working power out of it. He did, however, attract the attention of the federal government, which took away the radioactive materials and his mother’s tool shed (which had become radioactive) and some other things that had become radioactive.
If you don’t in fact have weapons grade uranium, but only commercial uranium, then you may need to enrich the stuff (meaning to sort out the U-235 from the U-238), because the U-235 is fissionable and the U-238 is not. To do this properly you need the facility to work with uranium hexafluoride (a gas) and in particular to run it through a centrifuge, then to remove the fluorine from the uranium. Fluorine is toxic and corrosive and eats just about everything except fluorspar. It’s difficult to handle and store, and you’ll run into major problems trying to combine it with the uranium and then to dissociate it from the uranium.
Overall you’re going to be much happier spending your money on solar plates. Sorry!
Donald asks…
Could you capture enough methane from composting to generate electricity for an appliance or even a home?
Wondering if it could be used to power a generator when solar or wind isn’t functioning.
admin answers:
You can do just about anything if you spend enough time,effort AND money .
The real questions are, “Is it practicle? And Is it worth it?”
If you don’t mind having a tank of Cow S hit fermenting in your back yard you can certainly harvest methane to operate a generator. If you are only going to run the generator ocassionally so that you can save less than a dollars worth of electricity, then I am afraid that the economics just don’t make such a project worth it. (There is a reason you don’t see many of these systems in common use)
Powered by Yahoo! Answers
Your Questions About Solar Energy Generators India
Daniel asks…
where and when was Plutonium & Uranium first found and where has been found elsewhere?
and how, why Uranium, why it got its name after planet URanus? how, why for Plutonium too?
please explain how it was mined and which technology was needed to find it and mine it? and why?
how scientists knew what to look for also and what they planned to use these elements for too and why?
where these elements were then developed to make nuclear fission? what is fission?
please explain what you can.
thanks for your answers!
admin answers:
Uranium is a very heavy metal which can be used as an abundant source of concentrated energy.
Uranium occurs in most rocks in concentrations of 2 to 4 parts per million and is as common in the Earth’s crust as tin, tungsten and molybdenum. Uranium occurs in seawater, and can be recovered from the oceans.
Uranium was discovered in 1789 by Martin Klaproth, a German chemist, in the mineral called pitchblende. It was named after the planet Uranus, which had been discovered eight years earlier.
Uranium was apparently formed in supernova about 6.6 billion years ago. While it is not common in the solar system, today its slow radioactive decay provides the main source of heat inside the Earth, causing convection and continental drift.
The high density of uranium means that it also finds uses in the keels of yachts and as counterweights for aircraft control surfaces, as well as for radiation shielding.
Uranium has a melting point is 1132°C. The chemical symbol for uranium is U.
Uranium is widespread in many rocks, and even in seawater. However, like other metals, it is seldom sufficiently concentrated to be economically recoverable. Where it is, we speak of an orebody. In defining what is ore, assumptions are made about the cost of mining and the market price of the metal. Uranium reserves are therefore calculated as tonnes recoverable up to a certain cost.
Australia’s reasonably assured resources and inferred resources of uranium are 1,673,000 tonnes of uranium recoverable at up to US$130/kg U (well under the market ‘spot’ price), Kazakhstan’s are 651,000 tonnes of uranium and Canada’s are 485,000 tU. Australia’s resources in this category are almost one third of the world’s total, Kazakhstan’s are 12%, Canada’s 9%.
Several countries have significant uranium resources. Apart from the top three, they are in order: Russia, South Africa, Namibia, Brazil, Niger, USA, China, Jordan, Uzbekistan, Ukraine and India. Other countries have smaller deposits which could be mined if needed.
Kazakhstan is the world’s top uranium producer, followed by Canada and then Australia as the main suppliers of uranium to world markets – now over 50,000 tU per year.
Plutonium-238 has a half-life of 88 years and emits alpha particles. It is a heat source in radioisotope thermoelectric generators, which are used to power some spacecraft. Plutonium-240 has a high rate of spontaneous fission, raising the neutron flux of any sample it is in. The presence of plutonium-240 limits a sample’s usability for weapons or reactor fuel, and determines its grade. Plutonium isotopes are expensive and inconvenient to separate, so particular isotopes are usually manufactured in specialized reactors.
Plutonium was first synthesized in 1940 by a team led by Glenn T. Seaborg and Edwin McMillan at the University of California, Berkeley laboratory by bombarding uranium-238 with deuterons. Trace amounts of plutonium were subsequently discovered in nature. Producing plutonium in useful quantities for the first time was a major part of the Manhattan Project during World War II, which developed the first atomic bombs. The first nuclear test, “Trinity” (July 1945), and the second atomic bomb used to destroy a city (Nagasaki, Japan, in August 1945), “Fat Man”, both had cores of plutonium-239. Human radiation experiments studying plutonium were conducted without informed consent, and a number of criticality accidents, some lethal, occurred during and after the war. Disposal of plutonium waste from nuclear power plants and dismantled nuclear weapons built during the Cold War is a nuclear-proliferation and environmental concern. Other sources of plutonium in the environment are fallout from numerous above-ground nuclear tests (now banned).
James asks…
what are 5 sources of non conventional energy? answer quick please?
i need to know this for my test review please help? and i need an example for each i have three though im not sure if their right so help please and thanks?
i have :
solar energy:solar pannels, putting gardens on roof tops
wind power: wind mills
hydro power: niagra falls
admin answers:
St. Joseph’s Center deals with Power Supplies. We are happy when focus is given to environment friendly Power Units.
In this regard, one can consider Solar Energy panels (actually called photovoltaic cells) that generate up to 1000 watts of energy per meter squared in sunlight.
Wind turbine generators are useful in open areas of land that have no other use. They generate useful energy that can be stored in lead acid accumulators in remote areas.
Hydroelectric power generators have been the standard source of clean, env. Friendly power for many years. A single dam with a hydel unit can suppy many cities with power.
Tapping power from waves and tide that comes in at the sea shore is another useful source of energy that is being studied today. The British are working on a project in this field.
Movement is a source of power. In the Automatic Wrist Watch, the movement of the hand is converted into a winding force that keeps the watch wound and working throughout the day.
Bacteria convert decaying matter into useful gases that can be used for cooking. In my electronic project for SJRTC in Rajagiri College in Ernakulam of Kerala, India, I was pleased to find natural gas was being used in the hostel mess stoves to prepare meals for us. The natural gas is produced when bacteria ferment the decaying organic materials in an nonaerobic condition.
These are standard and time tested methods of power supply which is non-conventional.
Powered by Yahoo! Answers
Your Questions About Solar Generators For Home Use
Michael asks…
How can I use a windmill to help supplement my electric bill?
I looked into solar panels, but apparently it isn’t worth the money to buy one. Someone suggested a windmill. I have a large three bedroom home and the heating and cooling bill is killing me. Would a windmill work?
admin answers:
If you can get past the hurdle of having sufficient wind and any local codes or ordinances then it is certainly possible for you to have a wind generator. You can store the electricity in batteries and use a inverter to make AC power for your use.
Unfortunately it probably won’t provide the kind of relief you are hoping for. If you want to look further you could try some websites similar to this one:
http://www.mikeswindmillshop.com/wgenerators.html
Joseph asks…
any advice for a home generator?
the power here goes out alot, we’d like to get a generator, anybody have experience in this?
admin answers:
Yeah, but it would be a bit costly. You’d need a transfer switch and a fairly large gas or diesel powered generator. But the size of the generator would depend on the type of things you would need to keep running; ie – fridge, deepfreeze, furnace/electric heat, computers. You could also look into a large UPS (Uninterruptable Power Source), its essential just a big bank of car batteries, that , once the power goes out, kicks in and continues to keep your stuff running until the batteries die out. Obviouslt the more batteries the longer tiem you have before it dies too. At least with a generator you could last for as long as you’ve got fuel. It really depends on a lot of things. But these are definately a couple of common options. Also if your living in a more remote area, you may want to consider using an alternate form of power, like a wind generator, or Solar panels. Both could provide simple power for a few key items. Anyways, hope this helps.
Later
Powered by Yahoo! Answers
Your Questions About Solar Energy Colorado
Carol asks…
Could we put solar panels in orbit and send the energy down to the earth?
You could have huge solar panels that wouldn’t get in anyone’s way and they could collect power from the sun.
admin answers:
Space power satellites have been proposed many times.
It’s bound to be cheaper on the ground, however. If you calculate the area of say, Colorado, that needs to be covered with solar cells to supply all the electricity needs of the USA, you’ll be surprised at how small it is.
Lisa asks…
What are some renewable energy sources in Colorado?
What are some renewable energy sources ANY WERE in Colorado
?
admin answers:
Wind, solar and hydropower
Powered by Yahoo! Answers
Your Questions About Solar Energy Generator Cost
Donald asks…
How does a hydroelectric generator work?
I have a school paper due tomorrow, and I need to know how it works in DETAIL. I already have some, but can anyone help with the parts of the generator or something?
admin answers:
Hydroelectric power, or hydroelectricity, is generated by the force of falling water. (Hydro comes from the Greek word for water.) It’s one of the cleanest sources of energy, and it’s also the most reliable and costs the least.
Water is needed to run a hydroelectric power-generating unit. The water is held behind a dam, forming an artificial lake, or reservoir. The force of the water being released from the reservoir through the dam spins the blades of a giant turbine. The turbine is connected to the generator that makes electricity as it spins. After passing through the turbine, the water flows back into the river on the other side of the dam.
Electricity is produced by spinning electromagnets within a generator’s wire coil that creates a flow of electrons. To keep the electromagnets spinning, hydroelectric stations use falling water. Hydroelectric power plants convert the kinetic energy contained in falling water into electricity. The energy in flowing water is ultimately derived from the sun, and is therefore constantly being renewed. Energy contained in sunlight evaporates water from the oceans and deposits it on land in the form of rain. Differences in land elevation result in rainfall runoff, allowing some of the original solar energy to be captured as hydroelectric power. Most hydroelectric stations use either the natural drop of the river or build a dam across the river to raise the water level and provide the drop needed to create a driving force. Water at the higher level (the forebay,) goes through the intake into a pipe, called a penstock, which carries it down to the turbine. The turbine is a type of water wheel that converts the water’s energy into mechanical power. The turbine is connected to a generator, and (4) when the turbine is set in motion it causes the generator to rotate, producing electricity. The falling water, having served its purpose, exits the generating station through the draft tube and the tailrace where it rejoins the river.
At Ontario Power Generation (OPG), hydroelectric generation is their lowest-cost power source, producing approximately 34 terawatt-hours in 2002. OPG operates 36 hydroelectric stations, as well as 29 small hydroelectric plants and 240 dams on 26 river systems. The smallest station has a generating
capacity of just 1 megawatt; the largest more than 1,300 megawatts.
Sandy asks…
Why not build a long pipe in antarctica and pump ozone into the ozone hole?
Why not build a long vertical pipe in antarctica and pump ozone up into the ozone hole? By building a very long pipe we can avoid ozone rising through the lower atmosphere and thereby harming living organisms lower down. At the bottom of our pipe we can put a solar powered ozone generator -> 0 energy wasted in ozone production, 0 cost after initial setup. Lottery money or something similar can be used as startup capital. Even if it didnt fix the ozone hole it would still help it seal up faster. Is this idea feasible?
admin answers:
Cost prohibitive,
But why not extract from high ozone cities, and load them on long distance jets and dump them at 37,000 and higher altitude? Again I believe it is cost prohibitive.
This is my help and ideas from Washington, D.C. USA.
Powered by Yahoo! Answers